-
- Alle Zentrifugen
- Tischzentrifugen
- Standzentrifugen
- Gekühlte Zentrifugen
- Mikrozentrifugen
- Mehrzweckzentrifugen
- Hochgeschwindigkeitszentrifugen
- Ultrazentrifugen
- Concentrator
- IVD Produkte
- High-Speed and Ultracentrifuge Consumables
- Zentrifugenröhrchen
- Zentrifugenplatten
- Gerätemanagement
- Proben- und Informationsmanagement
-
- Alle Pipetten, Dispenser und automatischen Liquid-Handling-Systeme
- Mechanische Pipetten
- Elektronische Pipetten
- Mehrkanalpipetten
- Direktverdrängerpipetten & Dispenser
- Pipettenspitzen
- Flaschenaufsatzdispenser
- Pipettierhilfen
- Zubehör für Dispenser & Pipetten
- Automatisches Pipettieren
- Verbrauchsartikel für die Automation
- Zubehör für die Automation
- Services für Dispenser & Pipetten
Sustainability FAQ
Technical terms
Regulations, Laws & Directives
Certifications
Institutions, Organizations and Proprietary Content
Miscellaneous
Q&A
Technical Terms
12 Principles of Green Chemistry
Concretely, the 12 principles of green chemistry, formulated by Anastas and Warner entail the following:
Prevention / Atom Economy / Less Hazardous Synthesis / Designing Safer Chemicals / Safer Solvents and Auxiliaries / Design for Energy Efficiency / Use of Renewable Feedstocks / Reduce Derivatives / Catalysis / Design for Degradation / Real-time Analysis for Pollution Prevention / Inherently Safer Chemistry for Accident Prevention
Mehr erfahren
6R
Reduce: Minimizing consumption and waste generation at the source. (E.g., using less tubes, when solvents can be combined or using smaller tubes)
Reuse: Extending the lifespan of products or materials by using them multiple times. (E.g., reusing pipette tips where contamination or carry-over is not possible)
Recycle: Processing materials into new products to reduce waste. (E.g., separating paper and plastic waste in packaging to enable their processing into new products).
Rethink: Encouraging a shift in mindset to prioritize sustainability and reconsider consumption habits. (E.g., rearranging experimental groups to reduce sample size but increase statistical power).
Reject: Avoiding or refusing unnecessary or unsustainable products or practices. (E.g., deciding to use less hazardous chemicals for experiments instead of following common laboratory practices).
Repair: Extending the life of products by fixing or maintaining them, reducing the need for replacements. (E.g., repairing and re-calibrating old pipettes and pipette helper instead of buying anew).
Mehr erfahren
Biodegradable
It's important to note that while the term "biodegradable" implies that a substance can decompose in a natural environment, the rate and conditions required for biodegradation can vary significantly depending on the specific material, environmental factors like temperature, moisture, and oxygen availability, as well as the presence of the necessary microorganisms. Keep in mind, bioplastic and biodegradable are two different terms.
Mehr erfahren
Biodiversity
Alpha Biodiversity: Refers to biodiversity of a single sample or within a local ecosystem level.
Beta Biodiversity: Concerns the diversity between two communities or ecosystems, comparing those.
Gamma Biodiversity: Focuses on the comparison of multiple or many ecosystems.
Mehr erfahren
Carbon Capture Technology
Mehr erfahren
Carbon Credits
Mehr erfahren
Carbon Emissions
Mehr erfahren
Carbon Equivalents
Mehr erfahren
Carbon Footprint
Mehr erfahren
Carbon Neutral
Mehr erfahren
Carbon Neutral Products
Mehr erfahren
Carbon Offsetting
Mehr erfahren
Carbon Tax
Mehr erfahren
Carbon Tracing
Mehr erfahren
CFC (Chlorofluorocarbon)
Mehr erfahren
Circular Economy
Mehr erfahren
Climate Change
Mehr erfahren
Cradle-to-gate
Mehr erfahren
Cradle-to-grave
Mehr erfahren
Decarbonization
Mehr erfahren
Downcycling
Mehr erfahren
EHS - Environment Health Safety
Mehr erfahren
Embodied Carbon
Mehr erfahren
Environmental Impact
Mehr erfahren
F-gases
Mehr erfahren
Fluid Retention
Mehr erfahren
Geothermal Power
Mehr erfahren
Global Warming Potential (GWP)
Mehr erfahren
Grassroots Initiatives
Mehr erfahren
Green Chemistry
Mehr erfahren
Green Cooling Gases
Mehr erfahren
Green Electric Energy
Mehr erfahren
Green Officer/Sustainability Officer
Mehr erfahren
Hydrofluorocarbons
Mehr erfahren
Hydrocarbons
Mehr erfahren
Incineration
Mehr erfahren
Landfill
Mehr erfahren
Life Cycle Analysis (LCA)
Mehr erfahren
Ozone Layer
Mehr erfahren
Persistent Organic Pollutants (POPs)
Mehr erfahren
Plastics & Plastic Waste
Polyethylene Terephthalate (PET):
PET is formed from repeating units of ethylene glycol and terephthalic acid. Ethylene glycol is a diol compound (HO-CH2-CH2-OH), while terephthalic acid contains aromatic rings.PET's molecular structure provides it with excellent strength, clarity, and barrier properties, making it suitable for beverage bottles, food packaging, and synthetic fibers in textiles. Found in the laboratory in: Transparent Medium BottlesRecycling symbol: #1
Polyethylene (PE):
PE consists of repeating ethylene units (CH2=CH2). The difference between HDPE and LDPE lies in their molecular structure and density. HDPE is used in bottles, containers, pipes, and toys due to its toughness and resistance to chemicals. LDPE, with its flexibility and moisture resistance, is used in packaging films and coatings. - Found in the laboratory in: Opaque bottles and hazardous waste bags (HDPE) or Squeeze bottles and bin liners (LDPE)Recycling symbol for HDPE: #2, LDPE: #4
Polyvinyl Chloride (PVC):
PVC consists of repeating vinyl chloride units (CH2=CHCl). It can exist in different forms, including rigid and flexible varieties, and additives may be incorporated to modify its properties. PVC's versatility allows its use in pipes, window frames, flooring, medical devices, and packaging, where its durability and adaptability to different applications are advantageous.Found in the laboratory in: Fluid bas and Medical tubingsRecycling symbol: #3Polypropylene (PP):
PP is a thermoplastic polymer composed of propylene monomers (CH3-CH=CH2). Its repeating units create a linear chain structure.PP's chemical structure provides it with resilience, flexibility, heat resistance, and chemical inertness, making it ideal for a wide range of applications like packaging, automotive parts, textiles, and household goods.Found in the laboratory in: Pipette tips, Centrifuge tubes, pipette boxesRecycling symbol: #5Polystyrene (PS):
PS is derived from styrene monomers (C6H5CH=CH2), which form a linear polymer chain. PS is employed in various forms like solid PS (used in packaging) and expanded polystyrene (EPS) foam, known for its lightweight, insulation properties, and impact resistance in applications such as packaging and insulation materials.Found in the laboratory in: Cell culture dishes, cell culture flasksRecycling symbol: #6Please note that articles might contain numerous plastic types (such as tip boxes also contain polycarbonate for certain parts) and sometimes other additives that improve functionality. The symbol for other plastics is: #7. Please keep in mind, the numerical symbol differentiate the type of plastics, they do not indicate any recycling quality or range.
Mehr erfahren
Recycling
Mehr erfahren
Refrigerants (R-series)
Mehr erfahren
Renewable Power
Mehr erfahren
Shut the Sash
Mehr erfahren
Supplier Tiering System
Mehr erfahren
Supply Chain
Mehr erfahren
Sustainability Report
Mehr erfahren
Sustainable Procurement
Mehr erfahren
Thermal Power Station
Mehr erfahren
Upcycling
Mehr erfahren
Waste Management
Mehr erfahren
Waste Separation
Mehr erfahren
Regulations, Laws & Directive
Aarhus Convention on Access to Information, Public Participation in Decision-making, and Access to Justice in Environmental Matters
Applicable in: European countries and beyond, promoting environmental transparency and public engagement
Mehr erfahren
Basel Convention
Mehr erfahren
CDP (formerly Carbon Disclosure Project)
Mehr erfahren
CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act)
Mehr erfahren
Clean Water Act
Mehr erfahren
Code of Conduct
Mehr erfahren
Ecodesign Directive
Mehr erfahren
Electrical and Electronic Equipment Act
Mehr erfahren
Emissions Trading Scheme
Mehr erfahren
Energy Efficiency Directive (EED)
Mehr erfahren
Environmental Impact Assessment (EIA)
Mehr erfahren
European Directive 2012/19/EU (WEEE)
Mehr erfahren
European Green Deal & EU 2020/852
Mehr erfahren
ISO 14000 Series & ISO 14001
Mehr erfahren
ISO 9000 Series & ISO 9001
Mehr erfahren
Kyoto Protocol
Mehr erfahren
Montreal Protocol
Mehr erfahren
National Environmental Policy Act (NEPA)
Mehr erfahren
National Greenhouse Gas Inventory
Mehr erfahren
Paris Agreement (2015)
Mehr erfahren
Polluter Pays Principle
Mehr erfahren
REACH Regulation
Mehr erfahren
Renewable Portfolio Standards (RPS)
Mehr erfahren
Resource Conservation and Recovery Act (RCRA - USA)
Mehr erfahren
RoHS Directive (EU)
Mehr erfahren
Stockholm Convention on Persistent Organic Pollutants (POPs)
Mehr erfahren
Supply Chain Duty of Care Law
Mehr erfahren
Sustainable Development Goals of the UN (SDG)
Mehr erfahren
Taxonomy for Sustainable Activities
Mehr erfahren
Toxic Substances Control Act (TSCA - USA)
Mehr erfahren
Triple Bottom Line (TBL)
Mehr erfahren
UN Paris Agreement/Accord
Mehr erfahren
Global Reporting Initiative
Mehr erfahren
Certifications
ACT Label
Mehr erfahren
B Corp Certification
Mehr erfahren
Cradle to Cradle Certification
Mehr erfahren
Energy Star Certification
Mehr erfahren
Green Seal Certification
Mehr erfahren
LEED Certification
Mehr erfahren
SITES Certification (Sustainable Sites Initiative)
Mehr erfahren
Zero Waste Certification
Mehr erfahren
Institutions, Organizations & Proprietary Content
DOZN™ Tool
Mehr erfahren
EGNATON
Mehr erfahren
Green Algorithms
Mehr erfahren
Miscellaneous
Artificial/Cultured Meat
Mehr erfahren
Q&A
Why can’t all products be made out of recycled materials?
Recycled materials may vary in quality, purity, and composition because chemical properties of once used materials does not equal their virgin counterparts (e.g., chain lengths of plastic polymers). Inconsistencies in these aspects can make it challenging to guarantee the uniformity and reliability of the end product. Reduced strength, durability, or resistance to wear and tear are concerns for many manufactures. Another example is transparency, since recycled materials are often less transparent, observing color changes or properties of samples becomes challenging. Another major reason is that recycling materials can incur higher costs due to the collection, sorting, cleaning, and processing needed to meet quality standards and avoid contamination. Finally, in some cases, technologies are not yet advanced enough to efficiently separate components and are-synthesize those into reusable materials.
Given the missing trust of many scientists, and the making changes to use recycling products only for certain processes requires a big commitment, demand is often limited and thereby making manufacturing less feasible.
Mehr erfahren